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ABSTRACT

The objective of this talk is to describe three research thrusts in crashw0rthiness analysis:

!) aclaptivity
2) mixed time integration, or subcycling, in which different timesteps are used for different parts of

the mesh in explicit methods
3) methods for contact-impact which are highly vectorizable.

The techniques are being developed to improve the accuracy of calculations, ease-of-use of
crashworthiness programs and the speed of calculations. The latter is still of importance because
crashworthiness calculations are often made with models of 20,000 to 50,000 elements using explicit time
integration and require on the order of 20 to 100 hours on current supercomputers.

The methodologies will be briefly reviewed and then some example calculations employing these
methods will be described. The methods are also of va_ tobther nonlinear transient computations.
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OUTLINE

Adaptive mesh procedures in nonlinear
analysis: why, how, and what is the
status

• Subcycling (mixed time integration)

New highly vectorizable methods for
contact impact which are well suited to
adaptive methods

Figure 1

PREDICTION

The 1990's will be the decade of adaptivity.

adaptive mesh refinement

adaptive targeting

-- .k .

adaptive organization objectives

Figure 2
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PREDICTION

There are three types of adaptivity, which are known by the letters r, h, and p. These letters are
mnemonic letters and refer to how the refinement is achieved. In r methods the nodes are relocated. In h

methods, refinement is achieved by reducing the element size h. In p methods, refinement is achieved by
increasing the order p of the element interpolance.

TYPE OF MESH ADAPTIVITY

r-- method

relocate nodes

h- method

_"---adapt element size h

p- method

_'--adapt order p of element interpolants

Figure 3
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ADAPTIVITY IN NONLINEAR FEM

Adaptive methods are particularly useful in nonlinear problems such as crashworthiness because
nonlinear response is often characterized by localization. In the areas of localized response more
ref'mement is needed. When standard method is used, the user of the program must refine the mesh where
he anticipates this localized deformation. Therefore, different meshes must be developed for different
loadings. For example, in car crash, different meshes must be developed for frontal and rear impact, side
impact, and overturning. This can be quite expensive from the viewpoint of manpower.

Why are adaptive methods particularly important in nonlinear
problems?

Modes of failure of structures

i. buckling, particularly with formation of hingelines

ii. localization

iii. fracture

All of these involve local phenomena whose location cannot be
determined at the outset of a simulation.

Figure 4
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COMMENTS ON ADAPTIVITY FOR SHELL AND
CRASHWORTHINESS PROBLEMS

In comparing the different types of adaptivity for nonlinear structural dynamics problems such as
crashworthiness, the following advantages, which are marked by a plus sign (+), and disadvantages
which are marked by a minus sign (-), can be attributed to the various types of methods. From this study
we concluded that the h-method was the most suitable method for adaptivity in crashworthiness.

m method

- large elements cannot represent shape of shell

+ most accuracy with given NDOF compared to h

- history diffusion

- elements become distorted - decreases accuracy

+ easiest data structure

p m method

- awkward in nonlinear dynamics; no good lumped mass

+ easy data structure

method

+

+

m

relatively effective

no distortion of elements

moderately complex data structure

Figure 5
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TYPES OF ERROR INDICATORS

Error indicators are an important ingredient in adaptive methods since they are to a guide the refinement
of the mesh. Error indicators are classified by Oden in the following classes: residual, interpolation, and
post-processing. In the work we are doing, we are using projection error criterions, a post-processing
type, because they are very easy to implement and are quite effective for low-order elements.

1. Residual: Compute residual in governing equations and use its
norm or use it to drive an element or local enriched solution.

a) Explicit: Evaluate a norm of the residual.

b) Implicit: Use residual to drive a local or element error
equation•

• Interpolation Methods: Estimate magnitude of derivatives of
higher-order than contained in finite element space.

• Projection (postprocessing) Methods: Obtain a smoothed solution
and compare to finite element solution; sometimes called L2
projection methods.

Figure 6
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ADAPTIVE SCHEMES FOR TRANSIENT AND
NONLINEAR PROBLEMS

based on constant resource approach

1. Advance the solution n time steps

2. Compute element error indicators 0e

3. Sort 0e

. Fission elements with 0e > tolfusion

Fuse elements with 0e < tolfusion

5. Repeat the last n time steps with new mesh (optional)

6. go to 1

Note: If n is too small or tolfission too close to tolfusion, we

encounter "churning" which degrades accuracy. Our recent
experience shows 5 is quite important.

Figure 7
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REMARKS ON H-ADAPTIVITY

Constraints (or slave nodes in explicit methods) must be introduced
at nodes where a large element has two or more neighbors on one
side to enforce compatibility; easy in vector methods, awkward in
matrix methods.

Usually a group of contiguous elements should be fissioned
simultaneously because fissioning a single element does not provide
much enrichment; only one new free node.

In wave propagation problems, change in element size can cause
spurious reflections.

Usually mesh gradation is limited to 1-irregular meshes: large
element cannot have more than 2 small neighbors on any side; see
Devloo, Oden and Strouboulis (1987).

Data structure with fission and fusion is complex, particularly for
real engineering meshes; see Belytschko, Wong and Plaskacz,
Computers and Structures, 33(4-5), 1989, pp. 1307-1323.

Figure 8
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MIXED TIME INTEGRATION

In h-adaptive meshes, large variety of element sizes are found. When explicit methods are used of
such meshes, the timestep is reduced dramatically by the presence of small elements. Therefore methods
called mixed time integration (or subcycling) are being use&

Motivation • in explicit integration with same At over

entire mesh, stiffest element sets At. also called subcycling,
explicit-explicit partitions;

example

h ll
L_ /

B A

Atcrit = min (L) c = wave speed

h
for A Atcrit =C

h
for AwB Atcrit- i_c

so AvoB is 10x as expensiveas A

Figure 9
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Mixed Time Integration

Integrate each element or subdomain with Atcrit using an interface
treatment that preserves stability + consistency.

In example

2 4

integrate element 1 and nodes 1 to 4 with

At- h
lOc

elements 2 to 10 and remaining nodes with

cost savings: -- 90%

In adaptive methods, large range of stable time steps is unavoidable,
so subcycling is crucial for efficiency.

18
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CONTACT-IMPACT

The modeling of contact-impact is very important in the simulation of crashworthiness. However,

contact-impact algorithms often require more than fifty percent of the running time of a crashworthiness
code because they are not easily vectorized. Therefore we have developed a pinball algorithm which is far
more highly vectorizable.

Contact-impact is an important phenomenon in crash analysis, e.g.,

1. engine impact with body, fire wall

2. wheel impact with inner fender

3. contact of collapsing surfaces

Most contact-impact algorithms require many different branches.

penetrating
node

The branch of the algorithm which is activitated depends on which
surface is penetrated; there are special branches for edges, etc.

Figure 11
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PINBALL PENALTY ALGORITHM

T. Belytschko and M. O. Neal, International Journal for Numerical
Methods in Engineering, 31, 1991, pp. 547-572.

Interpenetration and interpenetration rate g are
computed on pinballs inserted in elements.

v

4

I
- Ll I '

- !
W-_ v

l_r. -

Enforces contact-impact conditions on spheres embedded
in elements.

As h ---) 0, impenetrability is enforced.

Algorithm is simple and highly vectorizable.
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Salient Features of Algorithm

Radius of pinball is determined by equivoluminal expression

3V
R 3 _ e

4r_

Pinballs are classed by body; for single-surface slideline, smaller R
needed.

Interpenetration has occurred when

d.. <R. + R.
_j _ j

g = dij

Pinball forces are equally transferred to all nodes of associated
element (a surface node option available).

The pinball method automatically places pinballs on outside
elements by using assembled surface normal algorithm.

Figure 13
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EXAMPLES OF NONLINEAR ADAPTIVE
COMPUTATIONS

Nonlinear, transient computations with an explicit nonlinear finite
element program WHAMS using h-adaptivity and pinball for contact
impact; see Belytschko and Yeh (1992).

An L2 projection on the strain invariants was used to calculate an
error estimate.

A commercial version of this program is available from:

KBS2, Inc.
455 Frontage Road
Burr Ridge, IL 60521
(708) 850-9444
Fax (708) 850-9455

Figure 14
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TWO-LEVEL ADAPTIVE MESH OF CYLINDRICAL PANEL

This shows an h-adaptive solution of a cylindrical panel which is impulsively loaded, Notice that the

elements are refined along the side and at the support, where there is severe plastic bending deformation,
and hinge lines consequently form.

c 9ms _748ch:m

Two-level adaptive mesh of cylindrical panel.

Figure 15
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This figure shows a comparison between solutions obtained by h-adaptivity and those obtained using a
very fine mesh and a coarse mesh. As can be seen, the adaptive solution compares well to the fine mesh
solution. The differences in the displacements obtained by the coarse mesh and the fine mesh are not

large, but for some of the stresses and strains, significant improvement is obtained by the use of
adaptivity.
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This shows results for an S-beam which is impulsively loaded. Again, significant differences occur in
some of the strains for a coarse mesh solution as compared to an adaptive or fine mesh solution.

2

F= 10000 LB m
3.6"

T - shape cross section
Material number 2 ( Table 6 )

Geometry of T-shape cross section beam.
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Thisshowstheevolutionof themeshfor theS-beam;notethattheh-refinementoccursatacomer
wherelocalbucklingtakesplace.

Time=0. ms; 442 elem Time=0.64 ms ; 718 elem

Time = 1.28 ms ; 673 elem Time=l.92 ms ; 688 clem

One-level adaptive mesh of T-beam.

Figure 18
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This is thesameproblemwith ahigherlevelof adaptivity.Farmoreelementsareplacedin theregion
of localbuckling.

- Time=0. ms; 1147 elem Time=0.32 ms ; 2794 elem

Time = 0.96 ms ; 2581 elem Time=l.6 ms ; 2212 elem

Two-level adaptive mesh of T-beam.

Figure 19
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This againcomparesdisplacementin strainsfor coarsemesh,fine mesh,andadaptivesolutions.
Againtheadaptivesolutionsagreeverycloselywith thefinemeshsolution.
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This is asolutionof aboxbeamwhichhasaninitial velocity asshownwith anattachedmassatthe
back. Thisproblemis oftenconsideredamodelfor crashanalysis.Thesolutionsfor fine mesh,coarse
meshandadaptivemeshesareShown;theadaptivesolutionagreeswell with thefinemesh.

Attachedmass,M _d wall

Beam

L

"_,

Beam Section

Geometry: L = 0.1500 m
a = 0.0300 m
t = 0.0015 m

Initial condition: V=15.64 m/see
Material number 3 (Table 6)

Box beam problem.

13.6 ._ 1--756 m"X'%

,:'>I
15.55

0 0,_1 0.0_l O_ 0.0(14 O_ 0.006

Velocity of point A in the box-beam (MAXLEV=I).
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Thisshowsatiming for a full carmodelwhich is shownon thenextpage.It is solvedwith full
contact-impactandsubcycling.Theimportantthingto noticeis thatsubcyclinggivesaspeedupof 1.7and
thattheeffectiveelementcycletimeonaCRAY-YMPhereis 12microseconds.

Timing

FULL-CAR MODEL

Elements:

Mass (kg):

Time steps:

80 msec simulation

17,297

1,880

78,274

CRAY-YMP

Without subcycling:
128 elements/block

Element cycle time:

With subcycling:
64 elements/block

Effective element cycle time:

Speedup:

7.63 hrs

20 gsec

4.39 hrs

12 lasec

1.7

Figure 22
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wlnBB - von-mises shell material - subcucle

tlme - @.BOBE+_O

Figure 23
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wlnBB - von-mlses shell materlal - subcycle

tlme - 8.000E+00

Figure 24
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wlnBB - von-m|ses shell materla! - subcycle

_Ime = 4._0!E+01

Figure 25
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Implementation and Stability

Time steps are assigned to nodes and element blocks automatically.

Elements are sorted by At crit
e

At crit _< At2rit _< ..... _< At crite n

Elements are arranged in blocks so that time steps of adjacent
elements have integer ratios.*

Blocking of elements is necessary to take advantage of vectorization.

For analysis of stability, see Belytschko and Lu, ASME publication
edited by G. Hulbert, et al, 1992.

*A new algorithm which does not require integer ratios has recently
been developed (Belytschko and Neal, Computer Methods in
Applied Mechanics and Engineering, 31, 1989, pp. 547-570).

Figure 26
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REMARKS AND CONCLUSIONS

• H-adaptivity is a promising technique for
simulating nonlinear structural response and
structural failure.

• Improves accuracy.

• Simplifies model preparation.

• Subcycling and advanced contact-impact methods
such as the pinball method can improve efficiency
of explicit dynamic codes and is essentia! with h-
adaptivity.

• Improved error criteria are needed for adaptive
methods for nonlinear solid mechanics.

Figure 27
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